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Opto-Thermal Mathematical Modeling and Inverse
Depth Profiling Using Genetic Algorithm1

Y. Cui,2 P. Xiao,2,3 and R. E. Imhof2

The use of opto-thermal transient emission radiometry (OTTER) for
non-invasive measurements of water concentration depth profiles in human
skin is important for developing an understanding of its barrier function.
In this paper, a new inverse method for analyzing opto-thermal data to
yield optical depth profiles, which is based on a new multilayer mathemat-
ical model designed for opto-thermal skin data analysis, is presented. This
has been combined with a novel inverse analysis technique using a genetic
algorithm. The performance of the new approach is tested on both simulated
data and in vivo experimental skin data. The theoretical background is pre-
sented, and the analysis of typical measurements using the new approach is
compared with conventional analyses.

KEY WORDS: depth profiling; genetic algorithm; photothermal radiome-
try; skin hydration.

1. INTRODUCTION

Opto-thermal transient emission radiometry (OTTER) is a non-
destructive, remote sensing measurement technology, which has proven
potentially attractive for biomedical studies [1]. Our previous work has
shown that the data from OTTER measurements is information rich,
and one meaningful characteristic of special interest is the sample’s opti-
cal depth profile, which often reflects the sample’s inhomogeneity and
can be correlated to concentration profiles of water or externally applied
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substances, depending on measurement protocol, excitation and detection
wavelengths. However, due to the severe ill-posedness of the inverse calcu-
lation [2], the analysis of OTTER data is limited and scarce.

In this work, we investigate a new multilayered mathematical model
and an inverse algorithm based on a genetic algorithm to extract the depth
profile of the optical absorption coefficient. Good agreement of the simulated
and measured data indicates reliability of the model and the algorithm.

2. MULTILAYERED MATHEMATICAL MODELING

In OTTER measurements, a pulsed laser is used as the excitation
source to heat the sample, and a fast infrared detector is used as a sen-
sor to pick up the consequent changes of the thermal radiation due to
this temperature increase in the sample near surface. A schematic diagram
of an OTTER measurement is shown in Fig. 1. The transient temperature
field can be expressed as [3]

θ(z, t)=
∫ ∞

0
θ(z′,0)G(z, z′; t,0)dz′ (1)

where θ(z′,0) is the initial temperature field and G(z, z′; t,0) is the Green
function. The opto-thermal signal comes from the transient thermal emis-
sion, which can be calculated from

S(t)= ζBE0

ρC

∫ ∞

0
βe−βzθ(z, t)dz (2)

where β is the absorption coefficient for the emitted thermal radiation, C

is the specific heat, ρ is the density, E0 is the energy density absorbed from

Infrared Emission SignalPulsed Laser Excitation

t t

Fig. 1. Schematic diagram of OTTER measurement.
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the excitation pulse, and the parameters ζ = ζ(λem) and B are sensitivity
factors that depend on the blackbody emission curve, detector sensitivity,
focusing, and alignment, but they are independent of the properties of the
sample per se [3].

In the simplest case of a homogeneous, semi-infinite sample, the ini-
tial temperature field and the signal can be expressed, respectively, as

θ(z,0)= E0α

ρ C
e−αz (3)

and

S(t)= ζBE0α

ρC
eα2Dterfc

√
α2Dt (4)

where α is the absorption coefficient for the excitation radiation and D is
the thermal diffusivity.

But many practical samples are not sufficiently ideal enough to be
treated as homogeneous, the new model discussed here is for samples with
homogeneous thermal properties but with inhomogeneous optical proper-
ties. The sample is divided into N layers, which are perfectly connected
with each other. Assume the absorption coefficient for excitation radiation
of the sample is constant, but each layer of the sample has an absorption
coefficient βi for the emitted radiation, and a thickness of Li . Then the
signal becomes

S (t) = ζBE0

ρC

N∑
i=1

∫ Li

Li−1

βie
−βizθ(z, t)dz

= E0α

2ρC
et/τα

{ N∑
i=1

e−(α+βi)Li−1

α +βi

erf c

(
t/τα −αLi−1/2√

t/τα

)

−e−(α+βi)Li

α +βi

erfc

(
t/τα −αLi/2√

t/τα

)
+ e(β2

i −α2)t/α2τα

α +βi

×
[
erf

(
−2βit −α2Li−1τα

2α
√

ταt

)
− erf

(
−2βit −α2Liτα

2α
√

ταt

)]

+e(α−βi)L1

α −βi

erfc

(
t/τα +αLi/2√

t/τα

)
−e(α−βi)Li−1

α −βi

erfc

(
t/τα +αLi−1/2√

t/τα

)

+e(β2
i −α2)t/α2τα

α −βi

[
erf

(
2βit +α2Liτα

2α
√

ταt

)
−erf

(
2βit +α2Li−1τα

2α
√

ταt

)]}
(5)

where τα =1/
(
α2D

)
.
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In the following algorithm, all the calculations are based on the above
model, normalized to its initial value (S (t) /S (0)).

3. INVERSE ALGORITHM

With an N -dimension vector �Sm and �Sc

(
�β
)

( �β = [β1, β2, . . . , βN ]) to
denote the measurement signal data and calculated data, the OTTER
inverse problem can be described as an optimization problem (Eq. (6)),
and in terms of the property continuity of a practical biomedical sample,
it is a constraint optimization problem.

Minimize
∥∥∥�Sm − �Sc

(
�β
)∥∥∥2

subject to
∣∣βi −βi+1

∣∣<Cβ i =1,2, . . . ,N (6)

where ‖·‖ denotes the Euclidean distance and Cβ is a constant to maintain
the property continuity of a sample.

Compared with other inverse algorithms [4], the Genetic Algorithm
(GA) can be used to search complex and large-state spaces more effi-
ciently, locate near optimal solutions more rapidly, and allow additional
constraints to be easily specified [5]. Due to the flexibility and versatility
of a GA in solving optimization problems, a GA is applied in this work.
GAs are relatively new combinatorial search techniques based on mechan-
ics of natural selection and natural genetics, which combines artificial sur-
vival of the fittest concept with genetic operations abstracted from nature.
The basic structure of a GA is shown in Fig. 2. First, an initial population
of chromosomes for the GA is generated, usually in a random way. Then,
the value of a function called a fitness function is evaluated for each chro-
mosome of the population. After this, the genetic operator’s reproduction,
crossover, and mutation are used in succession, to create a new popula-
tion of chromosomes for the next generation. The process of evaluation
and creation of new successive generations is repeated until the satisfac-
tion of a convenient termination condition.

Conventionally, most applications of a GA to constraint optimiza-
tion problems have used the penalty function approach of handling con-
straints [6]. However, the penalty function approach involves a number of
penalty parameters that must be optimized in any problem to obtain feasi-
ble solutions. Different from the conventional methods, Deb [7] developed
an efficient constraint handling method for a GA based on the penalty
function approach which does not require any penalty parameter. Accord-
ing to his fitness function, infeasible solutions are compared based on
only their constraint violation. Here, a binary GA is designed using Deb’s
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GA Procedure
begin

gen = 0
Initialize Pop(gen)
Evaluate Pop(gen)
repeat

gen = gen+1
Select Pop(gen) from Pop(gen-1)
Crossover Pop(gen)
Mutate Pop(gen)
Evaluate Pop(gen)
Pop(gen-1) = Pop(gen)

until (TerminationCondition)
end

Fig. 2. Basic structure of a genetic algorithm.

method but with a few modifications. The fitness function is devised as
follows:

F
(

�β
)
=




∥∥∥�Sm− �Sc

(
�β
)∥∥∥2

if
∣∣βi −βi+1

∣∣<Cβ ∀i =1,2,... ,N −1

N +
N−1∑
i=1

〈
Cβ −∣∣βi −βi+1

∣∣〉 otherwise (7)

where 〈 〉 denotes the absolute value of the operand if the operand is neg-
ative and returns a zero value otherwise. And other GA parameters are
defined as follows: population size = 10N , maximum number of genera-
tions =100, generation gap =0.9, and crossover probability =0.7.

4. RESULTS AND DISCUSSION

4.1. Simulation Results

With a constant thermal diffusivity and the absorption coefficient for
the excitation radiation, one group of simulated data, calculated (with 5%
white noise added) from one constant absorption coefficient (1.9 × 105

m−1) profile for the emitted thermal radiation of a ten-layered model using
Eq.(5), was used to test the new inverse algorithm. The sample is assumed
to be divided equally with a 1 µm length of each layer. The results in
Fig. 3 show obviously that the calculated data fit simulation signal data
perfectly, and the calculated optical depth profile of β is relatively con-
stant, which indicates that the new algorithm is efficient for the constraint
handling.
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Fig. 3. Results for simulation data.

4.2. Measurement Results

The measurements were performed at different skin sites on a conven-
tional OTTER apparatus with a Q-switched Er:YAG laser (2.94 �m) and
13.1 �m detection wavelength, and β gives information about hydration.
The results are shown in Fig. 4. In general, the skin of the forearm has
more water and a higher hydration gradient than other sites, while nail has
the least water and lowest hydration gradient than other sites. In all sites,
the skin is dry outside and wet inside, which produces a positive gradient
of β. These results agree with the depth profiles obtained using the seg-
mented least-squares fitting method [8].
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Fig. 4. Optical depth profiles of different skin sites: (A) nail, (B) palm, and
(C) forearm.

5. CONCLUSIONS

We developed a new multilayer mathematical model and an opto-
thermal inverse depth profiling technique using a modified GA. Both the
simulation results and the measurement results agree well with the given
signal data, which shows that the new scheme developed is promising and
effective to solve opto-thermal inverse problems.
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